WRC-15: Win Some, Lose Some

WRC 2015WRC15 concluded with new spectrum assigned for mobile services:

L-band:  1427-1518 MHz is now assigned for fixed and mobile services. The L-Band is used for mobile satellite services. Technical measures need to be developed for co-existence with mobile satellite in 1518-1559 MHz. The 1350 – 1400 MHz was also a target for IMT, but it did not get the required support. Read more of this post

Advertisements

Raising the Stakes in 3.5 GHz: LTE-Advanced Achieves 1 Gbps

1Gbps LTE-AThe 3 GHz frequency bands stands at the upper limit of what is considered today as viable spectrum for mobile communications. But bands 42 (3400 – 3600 MHz) and 43 (3600 – 3800 MHz) are not only the ‘last frontier’, but more importantly, they provide the widest spectrum of any other band (200 MHz). Additionally, the relatively short wavelength is perfect to enable advanced antenna system technologies based on beamforming and massive MIMO techniques. Couple these with the limited range of propagation that limits interference and the 3.5 GHz band becomes an interesting proposition for capacity starved operators. Read more of this post

From LTE-U to LTE-DSA: Solving The Capacity Crunch

LTE-UThe proposal by Qualcomm to enable LTE operation in unlicensed band (LTE-U) received a warm response from some (e.g. Ericsson, Verizon) and not so warm from others especially incumbents with strong legacy in Wi-Fi in both the vendor and operator communities. The contentious issue center on co-existence of LTE and Wi-Fi in the same band as Wi-Fi implements ‘listen before talk’ or in technical terms carrier sense multiple access (CSMA) as opposed to LTE where transmissions are scheduled by the base station. This issue plagued WiMAX in unlicensed bands and was topic of much work at the IEEE during standardization activities of that technology. Still, while the proposal is not yet an approved work item for 3GPP LTE Release 13, the next few weeks will most likely see this feature approved to include in the standard with completion timelines by end of 1Q 2016, when we very possibly can see actual systems deployed. Read more of this post

LTE-Advanced, 3.5 GHz, Small Cells and Neutral Host Services: A Powerful Mix to Abundantly Increase Network Capacity

ConnectivityAt a recent GTI event in Japan, Huawei demonstrated 770 Mbps peak throughput in a market trial of LTE-Advanced in 3.5 GHz spectrum. This was achieved with TD-LTE access mode with carrier aggregation. The trial showed 500 Mbps average throughput over multiple sites. Furthermore, Softbank demonstrated the ability to provide 1.2 Gbps peak throughput using 5-carrier aggregation in 3.5 GHz spectrum using TD-LTE.

Now, I think this is a significant demonstration for different reasons. It clearly shows the maturity level of TD-LTE technology and the thrust to implement carrier aggregation to achieve super fast wireless connectivity. It also demonstrates interest in using the abundant bandwidth in 3.5 GHz band to significantly grow the capacity of mobile networks. Read more of this post